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We demonstrate that conditional as well as unconditional basic operations which are necessary for universal
quantum gates can be performed with almost 100% fidelity within a strongly interacting two-electron quantum
ring. Both sets of operations are based on a quantum control algorithm that optimizes a driving electromagnetic
pulse for a given quantum gate. The demonstrated transitions occur on a time scale much shorter than typical
decoherence times of the system.
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Quantum computing requires a set of fundamental single
qubit operations which can address and manipulate each qu-
bit regardless of the state of the others. In addition at least
one conditional operation must be defined which can address
any chosen qubit based on the status of another.1 This poses
a major challenge in all logical devices composed of strongly
interacting single particle qubits: the interaction then creates
entangled multiparticle states which hide the single particle
character completely, e.g., regarding the energy spectrum or
the spatial particle distribution. Nevertheless, several basic
operations and quantum information algorithms have been
demonstrated, in nuclear magnetic resonances,2 trapped
ions,3 and coupled superconducting Josephson junctions,4

but scalability and decoherence remain severe obstacles in
taking experiments from a demonstration level to manipula-
tion of a large number of qubits.

The original idea to build gates from coupled quantum
dots by Loss and DiVincenzo5 was based on single electron
spin states interacting in neighboring dots. Recently Petta et
al.6 demonstrated single qubit control using the total spin
state of a two-electron quantum dot molecule. Conditional
operations in coupled quantum dots have also been experi-
mentally demonstrated,7 where excited states are a part of the
information carrier. Another suggestion has been to include
two qubits in a single quantum dot molecule with the total
spin as one qubit and charge localization as the other.8

Relative to coupled quantum dot-molecules and quantum
dot arrays, the quantum ring structure possesses a high-
degree of symmetry, implying the existence of conserved
quantities, e.g., persistent currents,9 related to the conserva-
tion of total electron angular momentum. The use of con-
served quantities for the buildup of a quantum processor may
be advantageous, compared to, e.g., charge localized states,
since the former are time independent as long as weak deco-
herence mechanisms, such as spin-orbit or hyperfine interac-
tions, can be neglected. In compliance with this we recently
proposed the two-electron quantum ring total angular mo-
mentum and total electron spin as a pair of independent
qubits.10 Since the total angular momentum is truly multival-
ued, ML=0, �1, �2, . . . we coined this system a “quMbit.”

In this Brief Report, we show that the total orbital angular
momentum and the total electron spin in the two-electron
quantum ring, in spite of the strong electron-electron inter-
action, can be coherently and independently manipulated and
that the intended quantum state is obtained with almost

100% probability. Hereby successful gate operations are
achieved, for both the unconditional �NOT� and the condi-
tional �CNOT� inversion operation. An alternative route to
scalability can then be foreseen since the information content
of each quantum ring increases with the number of control-
lable states. After a short introduction we demonstrate con-
ditional and unconditional manipulations of the angular mo-
menta and finally the unconditional manipulations of the spin
are outlined.

The confinement of an electron in a two-dimensional
quantum ring is modeled by a displaced harmonic potential
rotated around the z axis, giving a two-electron Hamiltonian
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Here m� is the effective mass �m�=0.067me for GaAs�, �0
determines the confinement strength, ri is the radial coordi-
nate for each particle, r0 is the ring radius and �r is the
relative dielectric constant ��r=12.4 for GaAs�. We have var-
ied the ring parameters around the values used in
experiments11 to optimize the gate performances and settled
for r0=2.5 a.u.��24.5 nm and a potential strength of ��0
=15 meV, which have been used throughout this work. The
eigenvectors and eigenvalues of the Hamiltonian �1� are
found by exact diagonalization.12 Figure 1 shows the energy
spectrum �left�, where red dashed lines denote triplet states,
S=1, and blue solid lines denote singlet states, S=0. The
right panel shows the two pairs of �S�ML�� states that consti-
tute our gates and the transitions to be controlled: The NOT
gate is a logical negation operation which inverts �switches�
the state of the qubit. Solid gray arrows indicate such a
switch of the orbital angular momentum independently of the
spin state. The controlled NOT �CNOT� gate is indicated by
a single black �dashed� arrow. It changes the orbital angular
momentum state for a spin triplet state, but leaves it unaf-
fected for a singlet. Hence, for this operation, the spin state is
the control bit and the angular momentum is the target bit.

To induce the needed transitions between the different
eigenstates of Eq. �1�, the ring is exposed to an electromag-
netic pulse, an adiabatically varied homogeneous magnetic
field in the z direction, B0�t�= �0,0 ,B0�t��, and a weak inho-
mogeneous magnetic field, Bs�r , t�,
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resulting in a time-dependent Hamiltonian Ĥ�t�= Ĥ0
+Vext�r , t�. The electric field drives the angular momentum
CNOT and NOT gate operations, while the two magnetic
fields are needed to perform the unconditional spin flip. The
inhomogeneous field is typically several orders of magnitude
weaker than B0 and is omitted in the diamagnetic term.
Through quantum control algorithms,13,14 the electric pulse E
can be optimized with respect to the desired gate operation.

Numerical solutions of the time dependent Schrödinger
equation were recently used to show that a CNOT operation
could be realized with 	97% fidelity for a �ML=1
transition.10 For this a circularly polarized electric-field
pulse, E�t�=E�t��cos��Lt�x̂�sin��Lt�ŷ� was driving the
transition between the two qubit levels, cf. Fig. 1. The tran-
sition was realized with a central frequency, �L, correspond-
ing to the energy difference between the active ML states,
within a transition time T=500 a.u.�	28 ps and with an
intensity E0�0.01 a.u.�	2.4·102 W /cm2. By optimizing
the transition using two independent electric fields in the x
and y direction we obtain a significant improvement in fidel-
ity as well as a shorter transition time. The electric field is
defined as a set of piecewise constant functions on the di-
vided time interval, 
Eti

� and ti� �0, t1 , . . . ,Tfinal�. During the
time propagation of the system wave function, ��t�, the field
components are adjusted at each step according to a first
order scheme,15 e.g., for the x component

Eti
I+1x̂ = −

Im�	I�ti��e�x1 + x2���I+1�ti��



x̂ , �3�

and similarly for the y component. In Eq. �3� I is the iteration
number and 	I�t� is the solution to the Schrödinger equation
with termination condition 	I�T�= �� f��� f ��I�T��. We want
to maximize the projection �the yield�, ��� f ��I�t���2. The
only constraint in this simple scheme is an energy penalty

given by the parameter 
 favoring low intensity fields. Ad-
ditional penalties on the structure and derivative of the con-
trol fields can be implemented to increase the fidelity even
further.16 Here we utilized this possibility for the CNOT.
Through optimization with respect to final states for both the
singlet and the triplet systems simultaneously, we are in ad-
dition able to achieve very high yields for the complete
CNOT gate as well as for the unconditional angular momen-
tum flip. The optimization in the former case is done starting
in the ML=0 triplet and singlet states, �0= �00��10�, and us-
ing the combined target state, � f = �00��11�. Similarly for the
unconditional angular momentum flip; we start in the singlet
and triplet ML=0 states and optimize with respect to the
target state �01��11�. This requires complete transitions for
two separate energy differences, implying a more complex
driving field, with at least two central frequencies.

Figure 2 shows the transition dynamics with initial ML
=0 population for the two operations, the controlled NOT
gate to the left, and the unconditional NOT gate to the right.
The upper figures show the population of the qubits during
the pulse. For the CNOT operation the initial state �S�ML��
= �10� is seen to steadily decay transferring probability to the
�11� state, and eventually we observe a complete transition.
The initial singlet state, �00�, on the other hand is transiently
coupled to other states but recovers its initial population at
the end of the pulse. Correspondingly, the upper right panel
shows a nearly complete transition from ML=0 to �ML�=1
for both spin states. An important gate condition is that the
operations should work also in the opposite directions, e.g.,
for the CNOT operation the same pulse should transfer initial
population in �S�ML��= �11� to �S�ML��= �10� while leaving the
singlet state population unaltered. The lower panels of Fig. 2
show the truth tables after the completed operation for both

FIG. 1. �Color online� The lower part of the energy spectrum of
the two-electron quantum ring, cf. Eq. �1�, as function of angular
momentum, �ML�. Red dashed lines denote triplet states and solid
blue lines denote singlet states. The transition routes for the NOT
transitions are highlighted in the right panel. Solid arrows denote
the unconditional NOT gate and the dashed arrow denotes the con-
trolled NOT gate.

FIG. 2. �Color online� Optimized qubit operations for the angu-
lar momentum transition, ML=0↔ �ML�=1. Left: two qubit condi-
tional CNOT where the transition takes place or not depending on
the value of the spin qubit. Right: single qubit NOT, where it al-
ways takes place. Depicted is an initial population in �S�ML��
= �00� �solid, black� or �10� �short dashed, red� being transferred to
�01� �dotted, black� or �11� �long dashed, red�. Lower: CNOT �left�
and NOT �right� gate truth table at Tfinal.
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initial conditions. The transition yields are seen to be 99.1%
for the NOT gate and 99.8% for the CNOT gate, within
transition times as short as 25 and 17 ps, respectively, i.e., at
least an order of magnitude faster than the inverse of the
typical electron-acoustical phonon scattering rate in one-
electron rings.17 For the opposite transitions the yields are
slightly lower but all still �98.3%. For other linear combi-
nations, e.g., an initial entangled state ��00�+ �11�� /2, im-
perfections are found to be less than 4%. These results are
achieved within as few as 10 iterations of the type in Eq. �3�.
Figure 3 shows the optimized pulses for the CNOT and NOT
gates decomposed in x and y components. The pulses are
rather simple, with frequency spectra centered on the energy
of the resonance transitions.

Finally, we consider unconditional manipulations of the
spin. This requires inhomogeneous magnetic fields or other
spin-mixing interactions. In principle an optimization algo-
rithm as above could be used, simply switching spin with
angular momentum. However, present technology cannot re-
alistically deliver inhomogeneous fields stronger than the mT
regime across the quantum ring system. We propose there-
fore a two step procedure involving combined homogeneous
and inhomogeneous fields, illustrated in Fig. 4. Consider the
transition from �S�ML��= �00� to �10�, i.e., from the lower sin-
glet state �solid blue curve� to the upper triplet state �dashed,
red curve�. The right panel shows the energy levels in the

presence of a homogeneous magnetic field, obtained by di-
agonalization of the Hamiltonian �1� in the presence of the
B0 terms in Eq. �2�. The field can bring the �00� state adia-
batically to the crossing point with the triplet state �S�ML��
= �11�. Here the spin is flipped by application of an inhomo-
geneous magnetic field over the ring. When the homoge-
neous field is subsequently decreased it is evident that the
transition has been made to the “wrong” triplet state, see Fig.
4. To make the final transition to the required triplet state
�10� we simply apply the unconditional NOT as demon-
strated in Fig. 2. The unconditional spin flip operation thus
becomes,

��S=0/1�t�� = UNOT
ML �t,t��UB0

�t�,0���S=1/0�t = 0�� �4�

where UNOT
ML and UB0

are time evolution operators, of which
the order is arbitrary. If the inhomogeneous magnetic switch
is applied at both avoided crossings �curved arrows� the
scheme will flip the spin state regardless of initial state.

The adiabatic development with homogeneous external
magnetic fields B0 is well known and the detailed dynamics
of the spin flip transition is now outlined: from decoherence
studies it is known that a weak inhomogeneous magnetic
field can flip the spin state of the system. The strength of the
magnetic fields is in these cases typically a few mT.6,18 With
an inhomogeneous magnetic field 	10–100 mT, the spin
flip can be performed on a much shorter time scale than the
natural process. Notably, it has been proposed to selectively
flip the spin by making use of the Aharonov-Bohm effect in
quantum rings.19

The two spin states can, with a circular configuration,

Bs�r� = �Bs sin��x̂ + Bs cos��ŷ , r � r0

0, otherwise,
� �5�

form a local two-level system. In the adiabatic basis the dy-
namics at the avoided crossings is described by,

i�
d

dt
�cS=0

cS=1
� = �0 B

B 0
��cS=0

cS=1
� , �6�

where cS denotes the amplitude of the two �avoided� crossing
spin states and B= �S=1�Bs�r��S=0� is the coupling induced
by the inhomogeneous field. The spin flip is then realized as
a perfect rotation around the z axis �on the Bloch sphere�
within a time frame, �	 �

2B .
In conclusion we have demonstrated conditional and un-

conditional fast high fidelity quantum gates in a strongly
coupled two-electron quantum ring model. We remark that
the fidelity of each gate may be further improved by restrict-
ing the upper intensity of the controlling fields on the ex-
pense of transition times. Alternatively it may be increased
with fixed intensities and reduced system sizes. Storage and
control of quantum information has thus been shown for
two-level spin states entangled with potential multivalued
angular momentum states. An extension of the qubit to a
multibit may be achieved through introduction of higher
excitation levels within each angular momentum number.
The proposal rests on the ability to steer the system between

FIG. 3. �Color online� Optimized pulses; x-�solid, black� and y
electric field components �dashed, blue� for CNOT �top� and NOT
�bottom� gates.

'switch'

FIG. 4. �Color online� �a� Spin flip transitions are indicated by
vertical arrows. �b� The qubit states at zero magnetic field. Uncon-
ditional angular momentum transitions are indicated by diagonal
arrows. �c� The lower part of the energy spectrum as a function of
applied homogeneous magnetic field. Solid lines denote singlet
states and dashed lines triplet states. The qubit states are highlighted
with thick red and blue curves.
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initial and final states with close to 100% transition probabil-
ity. This has indeed been achieved with relatively simple
final pulse shapes.
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